Data Analytics Research Seminar

Upcoming seminars


Gil Kur (ETH Zürich)

O. Deniz Akyildiz (Imperial College London)

[1] Kuntz, Juan, Jen Ning Lim, and Adam M. Johansen. “Particle algorithms for maximum likelihood training of latent variable models.” International Conference on Artificial Intelligence and Statistics. PMLR , 2023.

[2] De Bortoli, Valentin, et al. “Efficient stochastic optimisation by unadjusted Langevin Monte Carlo: Application to maximum marginal likelihood and empirical Bayesian estimation.” Statistics and Computing 31 (2021): 1-18.

[3] Akyildiz, Ö. D., Crucinio, F. R., Girolami, M., Johnston, T., & Sabanis, S. (2023). Interacting particle langevin algorithm for maximum marginal likelihood estimation. arXiv preprint arXiv:2303.13429.

[4] Oliva, P. F. V., & Akyildiz, O. D. (2024). Kinetic Interacting Particle Langevin Monte Carlo. arXiv preprint arXiv:2407.05790.

[5] Encinar, P. C., Crucinio, F. R., & Akyildiz, O. D. (2024). Proximal Interacting Particle Langevin Algorithms. arXiv preprint arXiv:2406.14292.

[6] Glyn-Davies, A., Duffin, C., Kazlauskaite, I., Girolami, M., & Akyildiz, Ö. D. (2024). Statistical Finite Elements via Interacting Particle Langevin Dynamics. arXiv preprint arXiv:2409.07101.


Giuseppe Cavaliere (University of Bologna)


Johanna Ziegel (ETH Zurich)


Arthur Gretton (Gatsby Computational Neuroscience Unit)


Pierre Del Moral (INRIA Bordeaux)


Randal Douc (Télécom SudParis)


Julie Josse (INRIA Montpellier)



Past seminars 2024-2025 


Jun Yang (University of Copenhagen)


Joint work with Krzysztof Łatuszyński and Gareth O. Roberts


Chiara Amorino (Universitat Pompeu Fabra)

We develop general techniques for establishing minimax bounds that shed light on the statistical cost of privacy in this context, as a function of the privacy levels $\alpha_1, \dots , \alpha_d$ of the $d$ components.

  

We demonstrate the versatility and efficiency of these techniques by presenting various statistical applications. Specifically, we examine nonparametric density and covariance estimation under CLDP, providing upper and lower bounds that match up to constant factors, as well as an associated data-driven adaptive procedure. Furthermore, we quantify the probability of extracting sensitive information from one component by exploiting the fact that, on another component which may be correlated with the first, a smaller degree of privacy protection is guaranteed. If time permits, we will finally discuss how to extend this concept to time-dependent data.


Ingrid Van Keilegom (KU Leuven)


François-Xavier Briol (University College London)

Archive 2013-2024

2023-2024

Sirio Legramanti (University of Bergamo)

Motivated by real-world data about subscriptions to the public transportation system of Bergamo (Italy) and its surroundings, we propose a method to incorporate properly transformed spatial covariates into a state-of-the-art stochastic block model, while inferring the weight of covariates. (Joint work with Valentina Ghidini and Raffaele Argiento)


Badr-Eddine Chérief-Abdellatif (LPSM, CNRS)


Nikolaus Schweizer (Tilburg University)


(Joint work with Anne Balter and Johannes M. Schumacher)

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4264811


Artem Prokhorov (University of Sidney)

https://doi.org/10.1016/j.jbankfin.2022.106735 


Gábor Lugosi (Universitat Pompeu Fabra)

Claire Boyer (LPSM, Sorbonne Université)

The direct implementation of physics-informed kernel estimators can be tedious, and practitioners often resort to physics-informed neural networks (PINNs) instead. We offer some food for thought and statistical insight into the proper use of PINNs.


Matteo Barigozzi (Università di Bologna)


Matteo Barigozzi and Luca Trapin


Davide La Vecchia (University of Geneva)


Vincent Fortuin (Helmholtz AI/TUM)


Gérard Ben Arous (NYU)

The next step is to understand how the system finds these “summary statistics”.  This is done in the last work with the same authors and with Jiaoyang Huang (Wharton, U-Penn). This is based on a dynamical spectral transition of Random Matrix Theory: along the trajectory of the optimization path, the Gram matrix or the Hessian matrix develop outliers which carry these effective dynamics.

I will naturally first come back to the Random Matrix Tools needed here (the behavior of the edge of the spectrum and the BBP transition).

And then illustrate the use of this point of view on a few central examples of ML:  classification for Gaussian mixtures, and the XOR task.

References:  NeurIPS 2022, Best paper award, CPAM March 2024, ICLR May 2024, and Arxiv 2310.03010.


Céline Duval (Université de Lille)


Peter Radchenko (University of Sydney)


Gilles Stoltz (Laboratoire de mathématiques d'Orsay, CNRS - Université Paris-Saclay & HEC Paris)

2022-2023

Lu Yu (CREST-ENSAE)


Nicolas Schreuder (Genova University) 

- A minimax framework for quantifying risk-fairness trade-off in regression (with E. Chzhen), Ann. Statist. 50(4): 2416-2442(Aug.2022).

- Fair learning with Wasserstein barycenters for non-decomposable performance measures (with S. Gaucher and E. Chzhen), arXiv preprint arXiv:2209.00427.

Alfred Galichon (NYU)  

- https://arxiv.org/abs/2204.00362.

- http://humcap.uchicago.edu/RePEc/hka/wpaper/Chiappori_Fiorio_Galichon_etal_2022_assortative-matching-income.pdf.

Guillaume A. Pouliot (The University of Chicago)  

Dion Bongaert (RSM Erasmus University)  

Cesare Robotti (Warwick Business School)  

2021-2022






2018-2019

Prof. Taoufik Bouezmarni (Laval University)

Extended Lorenz curves for general random variables

Prof. Matei Demetrescu (Kiel University)

Nonlinear Predictability of Stock Returns? Parametric vs. non parametric inference in predictive regressions 

Prof. Arijit Chakrabarty (Indian Statistical Institute, Kolkata)

Spectra of Adjacency and Laplacian Matrices of inhomogeneous Erdös-Rényi Graphs

2017-2018 Program:

Organizers: Prof. Luc Bauwens, CORE - UCL, Fellow of the Institute of Advanced Studies UCP Université Paris-Seine, Guillaume Chevillon, ESSEC Business School, Prof. Jeroen Rombouts, ESSEC Business School


Prof. Xavier D’haultfoeuille (ENSAE - CREST)

Testing Rational Expectations Using Data Combination

Prof. Artem Prokhorov (University of Sydney)

On Semiparametric Estimation using Bernstein Copulas

2016-2017 Program: 

Prof. Aurore Delaigle (University of Melbourne)                                               

Analyzing Partially  Observed Functional Data

Prof. Valentina Corradi (University of Surrey)

Improved Tests for robust forecast comparison

Prof. Jean-David Fermanian (CREST)

The behavior of dealers and clients on the European corporate bond market: the case of Multi-dealer-to-client platforms

Prof. Bas Werker (Tilburg University)

Arbitrage Pricing Theory for Idiosyncratic Variance Factors

Prof. Karim ABADIR (Imperial College London)

Macro and financial markets: The memory of an elephant

Prof. Joerg Breitung (University of Cologne)

Multivariate tests for asset price bubbles

Internet of Things & Predictive Analytics                                                                

Reda Gomery (Deloitte), Marc Van Der Laan (AT&T), Thomas Watteyne (INRIA), Georges Uzbelger (IBM)

Prof. Juhyun Park, (Lancaster University)

Estimation of functional sparsity in nonparametric varying coefficient models

Yu-Wei Hsieh (University of Southern California)                                                                    

Seminar on the Econometrics of  Matching models                                                                           

2015-2016 Program

Prof. Christophe CROUX (Katholieke Universiteit Leuven)
Sparse Cointegration
Prof. Nikolay GOSPODINOV (Federal Reserve Bank of Atlanta)
Spurious Inference in Reduced-Rank Asset-Pricing Models
Prof. Otilia BOLDEA (Tilburg University)

Break-point Estimation in Panel data with fixed effects 

Prof. Cristina DAVINO (Università de Macerata, Italy) -Quantile Regression an overview of properties and applications

2014-15 Program

SUBPAGES (1): 2013-14 PROGRAM OF ECONOMETRICS & STATISTICS SEMINARS